An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems

نویسندگان

  • Fabio Roli
  • Josef Kittler
  • Giorgio Fumera
  • Daniele Muntoni
چکیده

In this paper, an experimental comparison between fixed and trained fusion rules for multimodal personal identity verification is reported. We focused on the behaviour of the considered fusion methods for ensembles of classifiers exhibiting significantly different performance, as this is one of the main characteristics of multimodal biometrics systems. The experiments were carried out on the XM2VTS database, using eight experts based on speech and face data. As fixed fusion methods, we considered the sum, majority voting, and order statistics based rules. The considered trained methods are the Behaviour Knowledge Space and the weighted averaging of classifiers outputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed and Trained Combiners for Fusion of Imbalanced Pattern Classifiers

In the past decade, several rules for fusion of pattern classifiers’ outputs have been proposed. Although imbalanced classifiers, that is, classifiers exhibiting very different accuracy, are used in many practical applications (e.g., multimodal biometrics for personal identity verification), the conditions of classifiers’ imbalance under which a given rule can significantly outperform another o...

متن کامل

A Personal Identification Framework based on Facial Image and Fingerprint Fusion Biometric

Biometric based person identity verification is gaining more and more attention. Several studies have shown that multimodal biometric identification systems improve the recognition accuracy and reliability compared with recognition using a single biometric. The present paper introduces a new personal identification framework that is based on the fusion of face and fingerprint biometrics. The pr...

متن کامل

Person Identity Verification Based on Multimodal Face-Gait Fusion

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation o...

متن کامل

Data Fusion For Biometric Verification System

A wide spectrum of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric systems and their applicability to access control, authentication and security applications. Alternative strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to perfor...

متن کامل

Using Data Fusion for Biometric Verification

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002